
Final Report

Grant Number: NAG2-1413

Title: Motion Planning in a Society of Intelligent Mobile

Agents

Principal Investigator
Dr. Albert C. Esterline

Department of Computer Science
North Carolina A&T State University

Greensboro, NC 27411

Grant Period

6/15/00 to 6/14/02

Technical Officer

Dr. Michael Shaflo

NASA Ames Research Center

Computer Sciences Division

IC:262-4

Moffett Field, CA 94035-1000

Administration

Office of Naval Research

Regional Office
100 Alabama St., SW, Ste. 4R15

Atlanta, GA 30303-3104

Ab_aet
The majority of the work on this grant involved formal modeli

integration. Wc conceptualize computer resources as a multiage
resources and human collaborators may be modeled uniformly. It

used modal for this uniform modeling+ and we had developed a!
absu'action. In this work, we applied this "abstraction (using CSP)

agents and users, which al]owed us to use tools for investigating E

revealed the power of p .m_.s-algebraic handshakes in!
conversation. We aLso investzgated specifications of human-co

style of algebraic specification. This involved specifying thq
required for coordination and pmces,_algebmic patterns of c
intended to establish the common knowledge. We invesdgar_d r_

endowed with perception to gain common knowledge and im

_g of human-computer

_t system so that these
previods work we had

>rocess-algebmic agent
in uniformly modeling
SP models. This work

_odeling face-to-face
rnputer systems in the
: common knowledge
ommtmication actions

e conditions for ng_ts

demented a prototFpe

neural-network system that allows agents to dctvct whom such conditions hold. The

'lit.c_r¢ on multiagent systemsconceptualize, communication._cdons as spree,h .acts.
We implemented a pmtotTpe system thaz refers the. dm.nt,_ ¢ff_r_ (o_,ga_ons,
permissions, prohibitions) of speech acts and detects vlotatxon? o_ mesa e.rrev=..
prototype distributed system was developed that allows users to/collaborate m moving
proxy agents; it was designed to exploit handshakes and common _.nowledge. Finally. in
work carried over from a previous NASA ARC grant, about _ifleen undergraduates

developed and presented projects on multiagent motion planning. /

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

The majority of the work on this grant involved formal modeling of human-computer

integration. We conceptualize computing resources as a multiagent system so that these
resources and human collaborators may be modeled uniformly. Section l presents

background on multiagent systems. In previous work, we had developed a process-

algebraic agent abstraction. Section 2 presents background on process algebras, and
section 3 discusses our agent abstraction. In previous work, we had used modal logics

for uniformly modeling agents and human collaborators. Section 4 discusses our

application of our process-algebraic agent abstraction (using CSP) for this modeling; this
allowed us to use tools for investigating CSP models. This work revealed the power of

process-algebraic handshakes in modeling face-to-face conversation. We also

investigated specifications of human-agent systems in the style of algebraic specification
- see section 5. This involved specifying the common knowledge required for

coordination and process-algebraic patterns of communication actions intended to

establish the common knowledge. We investigated (see section 6) the conditions for

agents endowed with perception to gain common knowledge and implemented a

prototype neural-network system that allows agents to detect when such conditions hold.
The literature on multiagent systems conceptualizes communication actions as speech

acts. As discussed in section 7, we implemented a prototype system that infers the

deontic effects (obligations, permissions, prohibitions) of speech acts and detects

violations of these effects. The prototype distributed system discussed in section 8 allows

users to collaborate in moving proxy agents; it was designed to exploit handshakes and

common knowledge. Section 9 discusses the design of the negotiation mechanism for

this testbed; this followed a promising new user-interface architecture and was expressed

with Statecharts.

In work carried over from a previous NASA ARC grant, about fifteen undergraduate

research assistants developed and presented projects on multiagent motion planning.

Section l0 summarizes this work, and the Appendix lists the presentations on this work

that were given at several conferences.
Section 11 gives the numbers and demographics on the students supported and

graduated. The publication record for this effort is summarized in section 12, and section
13 lists the activities that were carried out in conjunction with this grant. Section 14

concludes and sketches future research directions.

1. Agents and Multiagent Systems
Wooldridge [Wo99] defines an agent as a computer system capable of autonomous

action that meets its design objective in the environment in which it is situated. An

intelligent agent in particular is capable of flexible autonomous action, where flexibility
involves two somewhat opposing attributes: reactivity (the ability to perceive its

environment and to respond to changes in it) and pro-activeness (aiming at goals by

taking the initiative). In addition, since agents are autonomous, to achieve goals they

must cooperate with other agents, so a third aspect of flexibility is social ability.

Wooldridge notes that an object is superficially like an agent: it is a computational entity

encapsulating a state in which it can perform actions (method execution) and

communicate (message passing). The rather general notion of autonomy, however, has a

clear application here since agents are distinguished from objects, for one thing, by the
fact that the decision whether to execute an action lies with the object invoking the

2

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

method in an object system but with the agent receiving the request in an agent system.

(The other two characteristics that Wooldridge identifies as distinguishing agents from

objects are flexibility and the fact that a multiagent system is inherently multithreaded,

which admittedly does not distinguish it from a distributed object system.) Note that

autonomy relates to decision making, not to whether an implementation may execute in

isolation.

Moving beyond individual agents to multiagent systems, one characteristic of

multiagent environments identified by Huhns and Stephens [HS99] is that they "provide

an infrastructure specifying communication and interaction protocols." The other

characteristics ofmultiagent environments identified by Huhns and Stephens are that they

are typically open (with no "centralized designer") and (echoing Wooldridge) the agents
are autonomous and distributed. Abstractly, the open nature of these environments

entails that smaller systems (agents) can be composed to form larger systems (multiagent

systems), where composition involves coordinated concurrent activity. More concretely,

it entails that agents that were not specifically designed for a given multiagent system

may nonetheless participate in it. This requires flexibility on the part of the participating

agents. Huhns and Stephens also see coordination as critical and, in the case of self-

interested agents (where negotiation is involved), as a major challenge.

It is generally assumed that the agent communication language (ACL) is fixed for all

agents that may participate in a given multiagent system. Messages in an ACL are

generally conceptualized as speech acts. A message in an ACL generally distinguishes a

performative, which denotes the kind of illocutionary act performed - for example, an

assertion, request, or command. The message generally includes several predefined

fields, including the message content, and fields indicating the language of this content

and the ontology assumed. An ontology [Gu94] is a theory about what exists in a given

domain and the basic properties and relations among these things. An ontology is critical

for the semantics of the content of a message.

Coordination is essential for agents in a shared environment. A multiagent system

must maintain global coherence without explicit global control. The agents must be able

to determine common goals, enter into joint activities, reach agreements, pool

knowledge, and know what the others know. Cooperation among non-antagonistic

agents is coordination; negotiation is cooperation among competitive or simply self-

interested agents. Negotiation is often framed in terms of game theory. Many

cooperation protocols decompose and distribute tasks. The most widely used such

protocol is the contract net protocol [Sm80], modeled on the contracting mechanism used

by businesses. This protocol maintains a symmetry between a manager and a potential

contractor in that the potential contractor has a say in whether it will take on a subtask

announced by the manager. This is in sharp contrast to the RPCs used in frameworks.

Indeed, while a client-server architecture is the norm in frameworks, a peer-to-peer
architecture is more natural for multiagent systems. When, as is often the case, the

decomposition of a task is not given in advance, multiagent planning is needed. To avoid
communication bottlenecks and vulnerability to catastrophic failures, distributed planning

is desirable even though it is much more difficult than centralized planning.

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

2. Process Algebras and Handshakes

A process algebra is a term algebra that can be used to describe communicating

concurrent processes. The basic action in a process algebra is communication across an

interface with a handshake. Two processes performing a handshake must be prepared at

the time to perform complementary actions (usually thought of as output and input on a

given channel, hence communication). So a handshake synchronizes processes. When a

process in a system (itself a process, being a constellation of processes - see below)

performs a handshake, the system undergoes a transition - some previously possible
handshakes are no longer available, and new possibilities present themselves.

In CCS [Mi89], the possibility for a handshake is represented by a prefix. For

example, consider a process C that may hold a single data item. We can write
dot"

C - in(x). C (x) (1)

-- def

C (x) -- out (x).C

The prefix in(x) stands for a handshake in which a value is received at port in and

becomes the value of the variable x. Thus, C, that is,

in(x). C (x),

performs this handshake then proceeds to the definition of C, which has a parameter,_ x,

indicating that the value to which x is bound in the handshake is remembered. C, that is,

out (x).C,

outputs the value ofx at port out then proceeds to the definition of C. Note that the two

definitions used to define C can be collapsed into a single definition:
de/

C-- in(x), out (x).C (2)

More formally, where E and Ei (i in some index set) are process expressions and y is

a label (referring to a link or channel), we have the following five kinds of process

expressions (built with five different combinators)

1. A prefix is of the form p (x).E, y(x).E, or x.E. _ (x).E is a negative prefix; p can

be thought of as an output port of a process that contains it. p (x).E outputs x on port

then behaves like E. y(x).E is a positive prefix, where y is an input port of a

process; it binds the variable x. At port y the arbitrary value z is input by y(x).E,

which behaves like E{ z/x }, where E{ z/x } is the result of substituting z for all free

(unbound) occurrences ofx in E. We think of the two complementary ports, y and p,

as connected by a channel (link), also called y. x is the silent action; x.E first

performs the silent action and then acts like E.

2. A summation has the form _ _ 1E,., where the set I is a finite index set. The process

behaves like one or another of the Ei. The binary summation is written as E_ + E2.

3. A composition, E_ [E2, is a process consisting of E_ and E2 acting in parallel.

4. A restriction, E \ L, where L is a set of (link) labels, acts like E but prohibits actions

at ports y and p for all y _ L, with the exception of communication between

components of E along any link y e L. Restriction, like positive prefix, binds

variables.

5. A relabeling is of the form E[f], wheref(a relabeling function) maps labels to labels.

4

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

In addition, a defined process (with arity n), A(Xl,X2,...x,), has a unique defining equation,
d#

A(xl,x2,...x,) = P,

where xl, ..., x, are distinct variables and the only variables that may occur free in P.

h(yl,yZ,...yn) behaves like P{ yl / Xl, ...,y, / x, } for the simultaneous substitution of y;

for all free occurrences of x; (1 < i < n) in P. Since a defining equation allows recursion,

either direct (as in(2) above) or mutual (as in (1) above), it allows us to represent

repetitive behavior.

A process E may perform a communication action (that is, transition) or,

corresponding to a prefix, and evolve into another process E'. This is indicated by the
G

notation E _ E'. The meanings of the combinators are formally defined by transition

rules. Each rule has a conclusion (stated below a line) and premises (above the line).

Two rules are of particular interest, the first being (where y is a label):

y

E___._ E' F--+ F'

EIF--_E'IF'

This indicates communication between E and F, resulting in a silent action, t, whereby a

value is communicated between E (now E') and F (now F'). For example,
r

(z).P ty(x).Q -_ P I Q{ z / x }

We state the second rule for binary summation (where a is any communication action),

but it generalizes to arbitrary summation:

E---_ E'

E+F---_E'

This indicates a kind of choice: if a process can behave like E or like F but E takes the

opportunity to handshake, then the process behaves like E (doing a and evolving into E',

with no contribution from F). For example,
r

(_(z).Pl +P2)[y(x).Q _ el lQ{z/x }

Since restriction hides a link from outside observation or influence, we can force a pair of

complementary labels in distinct parallel components to participate in a handshake with

each other (if they indeed handshake) by restricting over the label. For example,

(_(z).Ply(x).Q) \ y

(where 'y' abbreviates ' { y } ') can perform only the t transition indicated above.

3. Modeling Multiagent Systems with a Process-Algebraic
Framework

There are several reasons to consider agents as processes and to model multiagent

systems with a process-algebraic framework. Compositionality allows process terms for

agents to be combined simply to form a term for a multiagent system. A process algebra

encourages one to think of a process as capable of certain interactions with its
environment that could be discovered by experimenting with it. When convenient, the

environment itself may be modeled as a (system of) process(es) and compositionality

5

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

allows the process-cum-environment to be viewed as a single process (system).

Communication protocols required of a multiagent environment can be formulated

straightforwardly in process algebras, which are often used for formalizing protocols. In

fact, handshakes are remarkably like speech acts in face-to-face communication.

(Suchman claims on p. 71 of [Su87] that "... analyses of face-to-face communication
indicate that conversation ... is a joint action accomplished through the participants'

continuing engagement in speaking and listening.") The symmetry of a handshake

distributes control between the participating processes/agents hence respects their

autonomy. Since there are handshakes with the environment, the reactive (in the sense

opposed to pro-active) nature of agents can be accommodated.

A process-algebraic framework for modeling multiagent systems does not so directly

capture aspects of the agent abstraction that are not directly related to communication.

The pro-active aspect involves (internal) planning, and negotiation involves (internal)

computation by the negotiators in addition to their communication. Process algebras,

however, typically allow "silent" actions (handshakes not observable outside the process

making them) among components that have had their communication ports in some sense

internalized within a single process. Sequences of silent actions offer hope for modeling

computations internal to agents.
But not all processes are agents. Generally, a process P can perform a

communication action, or transition, then behave like the process resulting from reducing

P in a certain way. Some of the operators (and the syntactic patterns they govern) persist

through transitions; an example is the (parallel) composition operator. Others, such as

the alternative operator, do not thus persist - once one alternative is selected, the others

are no longer available. Think of a system as an encompassing process whose several

component processes - agents - persist (perhaps in reduced form) through transitions.

We picture a pair of agents P and Q as connected by a link - a possibility for a handshake
- when P contains a name denoting an action and Q contains a name denoting the

complementary action. This framework, then, gives a picture of the communication

linkage of a multiagent system.

4. Modeling Societies of Agents and Users Using CSP

As computing resources become more readily available, certain tasks now done by

groups of humans may be achieved more efficiently and reliably by allowing humans to
collaborate with computing systems even as they collaborate among themselves. We

have shown how such collaboration can be formally modeled so that human users and

computational entities are modeled uniformly [ME01,Mo01]. We consider abstractly the

communications that systems (users and computing resources) perform. This part of our

research addresses an abstract aspect of the topic NASA has termed human-centered

computing [NA00], and it is related to dialogue modeling (see [DF+98], sec. 8.1), which

addresses the exchange of information (conversation) between a user and a computer

system. We abstract away from the syntax of interfaces by modeling communication

events and their content.

We use the agent abstraction described in [ER01,ERH02] - a process-algebraic

process that persists through communication actions - in modeling both humans and

computational resources. Developing human-centered systems has unique demands since
humans must also be modeled. A competence model of a user predicts legal sequences of

6

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

behavior; a performance model also addresses what is required to produce each sequence

(see [DF+98], sec. 6.2). The agent abstraction allows us to formulate a competence

model of the participants.

For this part of our research we used the process algebra CSP [Ro98] to express the

agent abstraction. Alexander [A187]], addressing the design of software geared toward

human-computer interaction, presents a collection of languages, tools, and methods that

views dialogue in terms of discrete events. Events are modeled with a functional

language. The overall structure of the dialogue is specified with a subset of CSP, which

defines the possible sequences of events. We, however, use only CSP as supported by

FDR [FS97], a tool for analyzing CSP models that identifies deadlocks and livelocks and

verifies refinement relations. This version of CSP allows data types to be declared and

functions to be defined and applied.

As an example for applying the agent abstraction to human-computer integration, we

consider an electronic purchasing system composed of human and non-human agents

[Me01]. This allows (artificical) agents to negotiate the sale of a car without direct

human intervention except to finalize the transaction. Each customer (buyer) is

represented by a personal assistant, and each seller is represented by a sales

representative. We would generally expect the customers and sellers to be humans and

the other agents to be artificial, but this need not be the case. When a customer wants to

buy a car, he sends information about the intended purchase to his personal assistant, who
notifies the broker. If the broker is notified by a sales representative that its seller wants

to sell the kind of car the customer in question is looking for, then the broker initiates a

negotiation session between the personal assistant and that sales representative. If no

sales representative informs the broker that it has the kind of car in question for sale, then

the broker takes the initiative and asks the sales representatives whether they are selling

such a car. If one replies positively, then the broker initiates a negotiation session

between it and the personal assistant in question. If the broker cannot find a sales

representative selling the kind of car the customer wants, then it waits until something
becomes available. In a similar way but with the roles reversed, the attempted sale can

also be initiated at the seller's end. The negotiation is handled by the personal assistant

and the sales representative that the broker has paired. If they reach an agreed price, the

respective customer and seller may concur and conclude the transaction, or one or both

may cancel the transaction, in which case everyone starts over again.

Figure 1 is a flow graph representing our system specification with the exception of

the channels used during negotiation between a personal assistant and a sales

representative. In this particular specification, there are two customers (CU), each with its

own personal assistant (PASS), and there are two sellers (SELLER), each with its own

sales representative (SALESREP). We distinguish the two instances of each kind of

agent by appending 'T' to the name of the first and "II" to the name of the second. There

is a single broker (BROKER) and a single database (DB), which contains information of

the particular cars being sold. All channels are simplex, which makes the specification

clearer. Where x is an abbreviation for agent X and y is an abbreviation for agent Y, the

channel from X to Y is named x2y. The abbreviations for the kinds of agents are sr

(SALESREP), cu (CUSTOMER), pa (PASS), sel (SELLER), br (BROKER), and db

(DB). The abbreviation for the particular agent is formed by appending 'T' or "ii" to the

7

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

abbreviation for its kind. Thus, for example, the channel from CUI to PASSI is named

cui2pai.

The type of a channel is a sequence of more basic types. Any given channel may not

use all the data fields available, allowing a single channel to be used for different kinds of

communications. Every channel except

those from the database begins, in the

spirit of KQML, with a performative.
On a channel from a customer to a

personal assistant or from a seller to a

sales representative, we communicate

the negotiation parameters. Some
channels communicate information

about a vehicle, and some communicate

economic actions in two fields: buy or

s e 11 and the model. When the broker

pairs a personal assistant with a sales

representative, it must tell the personal

assistant the identity of the sales

representative (srl or sr2) and the

sales representative the identity of the

personal assistant (pal or pa2).

Finally, to conclude a deal,

communications must include a response

yes or no.

Since the full specification resulted

in far too many states for FDR to handle,

we scaled the specification down by

reducing the range of values allowed for

communicating data, by having only one

cui___2seli SELLERi

ii cuii2seli

cui2pai sri2seli seli2sri

SALES

PASSI REPI

br2sfi

br2pai

paii2br

3ROKER

br2paii

db2sri

,r2srii

SALES

PASSII REPI1

pai2cui cui2pai

CUll

_ sri2seli

cuii2selii

Figure 1. EPS Flow Graph

customer, personal assistant, sales

representative, and seller, by eliminating BROKER, and by generally simplifying the

behavior of the retained agents. FDR confirmed that the resulting system, called

BUYSELL, is deadlock free. It is not, however, livelock free. Investigation using the

FDR Debug tool indicated that livelock arises when the CUI process keeps being told

that the seller is not willing to sell and evolving back into itself. In fact, this is a

possibility we anticipated, and no other source oflivelock is present.

We abstracted out a component of the system and refined it so as to capture more

focused aspects of human-computer integration. We refined the customer, CUI,

expanding it to include an interface that allows humans at the periphery of the system to

interact with the agents in the system. PERSON is a human and INT is the interface.

INT communicates with the personal assistant, PASS, which is now a dummy. SELLER

too is now a dummy; it comes into play only if and when the deal is arranged. FDR was

used to confirm that indeed the resulting system failures-divergences refines BUYS ELL.

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

5. Abstract Projects: Term Rewriting to Simulate Process-

Algebraic Behavior and Attaining Common Knowledge

Bringing common knowledge into the account does not preclude a process-algebraic

explication of the agent abstraction, as one branch of our research shows [Is01 a,Is01b].

Here we are again concerned with how human users and automated systems may

collaborate to complete projects. We again conceptualize the automated resources of the

system as a multiagent system so as to represent users and system resources (or devices)

as uniformly as possible. For now, we use the term "agent" to cover both (human) users
ad automated resources. We attempted to specify a system of collaborating devices and a

human user in the manner of algebraic specification. This involved representing a state

of the system (thought of as a stage in a conversation) as a term with two components:

one, in a restricted version of CCS, representing the behavior of the participants, and the

other representing their common knowledge.
We use algebraic specification [vL89] to specify abstractly the situations in which

agent communication takes place, the actions the agents may take in these situations, and
the results of these actions. Software engineering techniques are generally structured

around data rather than around functions since data are a more stable part of a system. So

structuring around data yields specifications with a higher degree of continuity and

reusability. The key point in structured design of software systems is to look for abstract

data types (ADTs). A specification of an ADT describes a class of data structures by

listing the services available on the data structures together with the intrinsic properties of

these services. In specifying an ADT, we are not concerned with how a data structure is

actually represented or how each operation is implemented. Rather, we are concerned

with what the data structure signifies at the level of a customer who wants to instantiate

the data type for use in his program. Specification modules abstract away all irrelevant

details of data representation and procedure implementation. By avoiding side effects,

properties of an ADT can be expressed in a simple and rigorous way. These properties

are expressed as axioms and theorems in the form of identities (i.e., equations); the

axioms formally describe the semantic properties of the algebraic specification.

By modeling ADTs with mathematical objects, we can reason rigorously about them.

Rigorous reasoning in algebraic specifications is based on induction for general results.

It is based on equational reasoning when we exploit the constructive nature [vL89, ch. 4]

of these specifications to enable a kind of rapid prototyping. Equational reasoning is
concerned with a restricted class of first-order languages: the only predicate symbol is

equality. Equational logic is the foundation of term rewriting [BN99], but term rewriting

uses equations as directed replacement rules, that is, the left-hand side can be replaced by

the right-hand side but not vice versa. This constitutes a Turing-complete computational
model that is close to functional programming. Terms are build from variables,

constants, and function symbols. Given a rewrite rule

O_ = 1_,

and a term t, one tries to match ot with a sub-term of t, instantiating variables in ot as

required. A match with a sub-term t' of t defines a substitution 0 = {tl/vl, ..., tn/vn},

where vl, ..., vn are the variables in ot and tt, ..., tn are sub-terms of t; such that ct0 = t:

Then t'is replaced in t with 130. Note that any variables in t are not instantiated. In this

respect, the pattern matching used in rewriting differs from unification. Variables in the

target term cannot be used to transmit bindings and, in fact, are treated like constants.

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

We attempted to develop the notion of an abstract project, where a project is a step

from an initial state of common knowledge to a state with additional, new common

knowledge. We represent the state of the system with two components, one being the

current common knowledge. The other is a term in a restricted version of CCS denoting

the possible communication behaviors. In particular, the (parallel) composition operator

may occur only as a top-level operator since the parallel components are the individual

agents. This representation was encoded into the language of the automated reasoning

system Otter [WP99], and equations were encoded for necessary CCS transition rules.

Term rewriting (called demodulation in Otter) was then used to reduce the overall term to

a normal form, where the behavior term is a parallel composition of process identifiers

and a new common knowledge proposition has been conjoined to the old.

The scenario used to test this approach involved a human interacting with smart

appliances for making breakfast. The agents are coordinated: they start together and

remain in a steady state together; if any one fails or is interrupted, they all are. The state

at the end of each step (joint project) must be common knowledge. We had to make

assumptions about bounds on the time delay between some communication actions so

that common knowledge may be achieved. Term rewriting reduced a term by simulating

the CCS-specified behavior until a normal form was reached, where new common

knowledge was asserted. Then another abstract project could be simulated, representing

another step in the evolution of the system.
Several issues about term rewriting relative to process algebras were raised by this

research. We are still working out these issues, and they are being addressed in a book

chapter we are writing. These issues, however, should not obscure the general idea of

this approach. An abstract specification of a joint project is initially specified in terms of

the initial common knowledge and the new common knowledge reached. This

specification is refined with a process-algebraic description of the possible behaviors that,

given the initial common knowledge, will achieve the new common knowledge. Term

rewriting is used to show that one of the designated states of new common knowledge
must thus be reached. Note that other groups (systems) need consider the activity of the

group whose joint activities are under consideration only in terms of the common

knowledge of that group.

6. Heuristics for Inferring Common Knowledge via Agents'

Perceptions
One graduate student investigated the conditions for agents endowed with perception

to gain common knowledge and implemented a prototype neural-network system that

allows agents to detect when such conditions hold [Wi00,WE01]. It has been proved that

common knowledge is a prerequisite for reaching agreement and for coordinating actions

among agents, whether human [CC82] or artificial [FH+95]. Since most environments

are dynamic, the common knowledge agents have initially does not generally suffice for

agents to coordinate their actions in all situations. So attaining common knowledge is a

critical issue.

Common knowledge has been studied in several disciplines, such as philosophy,

linguistics, game theory, and distributed systems. Philosophers and linguists have studied
how humans can attain common knowledge in everyday life. In this context, the term

"mutual belief' is often used instead of "common knowledge." We use these terms

10

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

interchangeably. Even though "A knows that q_" implies that q_is true, while ".4 believes

that q¢' does not, this difference is not critical here. The philosophical study has

highlighted the role of special kinds of perceptual evidence and the mutual belief

induction schema (formulated by Clark and Carlson [CC82]) for inferring mutual belief.

In distributed systems, in contrast, the focus is on how artificial agents can attain

common knowledge via available communication channels. The properties of the

communication channels are the major factors for attaining common knowledge. It is

concluded that agents can attain approximate common knowledge via reliable

communication channels with bounded delivery time [FH+95].

This work showed how a special kind of perceptual evidence (physical co-presence)

and the mutual belief induction schema may be applied to attain common knowledge in a

group of artificial agents. The mode of perception we use as an example is vision since it

supplies simple, clear examples. Our results, however, apply to any mode of perception

that suffices to identify other agents and what they perceive. Most of the work addresses

groups of two agents, but most of it easily generalizes to larger groups. Our results imply

that coordination of multiagent systems need not depend on explicitly designed and

implemented communication channels. Indeed, coordination may be implicit in the joint

activities the agents pursue as long as they have shared perceptual abilities and common

knowledge of these abilities. This is particularly significant since communication

channels may fail, may be expensive to maintain, and may divert much of an agent's

resources.

To focus on the episodic nature of physical co-presence evidence, we introduced a

modal operator for seeing into the standard epistemic logic, and we introduced time

parameters for modal operators. To attain common knowledge by physical co-presence,

agents must model each other's perception, and this requires shared perceptual abilities

and common knowledge of these abilities. Finally, we gave a procedure, which explores

the structure of the perceptual models, for determining when common knowledge can be

attained via perception in a group of two agents.
Common knowledge is critical in multiagent systems since it is a prerequisite for

coordinated activity. It is not enough for agents to share information; they must detect

when they have common knowledge so they may proceed safely with coordinated

activity. A standard design would have rules for classifying perceived objects, including

other agents, and rules for constructing perceptual models of other agents. We

implemented a prototype of this sort and coupled it with a back propagation neural

network [Wi00]. The behavior of the agent adapted to the feedback of the trainer so that

the agent captured much of the "hidden knowledge," the facts, rules, probabilities, and

other relations not captured by the knowledge engineer. We intend eventually to embed

agents that detect common knowledge into systems endowed with sensors and actuators,
and to connect the agents with communication channels, giving them additional

opportunity for common knowledge. Fagin and Halpern [FH94] have provided a model

for reasoning about knowledge and probability together, which is probably generally

required in real-life situations.

7. Interpreting Speech Acts in Terms of Their Effects
One graduate student [Th01] developed a prototype program that tracks the effects of

speech acts [Si98] performed by two interlocutors conversing via keyboard input. It

11

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

maintains a schedule for these effects (e.g., if A promises B to meet him somewhere at

time T, this meeting is recorded in the schedule at time T), hence it is called the

Performative Scheduler. (A speech act is a performative utterance.) A speech act

consists of an illocutionary force and a propositional content. The illocutionary force

determines the type of act, such as asserting or commanding. The propositional content

is what is, for example, asserted or commanded. We explore in particular six categories

of speech acts: assertives, directives, commissives, permissives, prohibitives and

declaratives. Assertives are statements of fact; directives are commands, requests or

suggestions; commissives are promises, commitments to the speaker's course of action;

permissives give permission; prohibitives take permissions away; and declaratives entail

occurrences of actions. The effects of speech acts of interest here are obligations

(established by directives and commissives), permissions (established by permissives),

and prohibitions (established by prohibitives); we call these effects deontic effects. In

addition, assertives indicate beliefs, both on the part of the speaker and (as an effect) on

the part of the addressee.
We have developed a context free grammar using definite clause grammar rules of

the logic programming language LIFE [Ai94]. This grammar is able to handle a selected

range of vocabulary items and syntactic structures used by the Performative Scheduler.
To structure the values of attributes, we use feature structures [Ca92], which are the

primary data structures of feature description languages and are supported by LIFE

(known there as tg-terms). These intensional, record-like structures represent partial
information. Feature structures are also used as a repository of values for features, which

help to interpret sentences in the language.

In the prototype, the user inputs a speech act and the prototype scheduler updates
data structures that record the effects of the speech acts that have been addressed to it or

that it has generated. The contents of the data structures are extracted from the feature

terms constructed when a speech act is parsed. The prototype displays commitments and

beliefs on the part of the users. The Performative Schuler maintains consistency among
the deontic effects. This includes exploiting the following equivalences, which are

standard theses in deontic logics [Aq84]. Let q_ be any proposition, and let O % P qo,

and F q_ mean that, respectively, it is obligatory that q_, it is permitted that % and it is

forbidden (or prohibited) that q0. Then

Pq0 -- _ O-_ q_ - --,F q0

If one interlocutor performs a speech act whose effect is inconsistent with something

already scheduled by him, then he is given the option to cancel the speech act or override

the previous item. A speech act that is inconsistent with something already scheduled by
the other interlocutor is disallowed. A simple interface allows events (especially actions

by the interlocutors) to be tracked, and the Performative Scheduler flags violations of the
deontic effects as they occur. Apparent violations due to the clash between beliefs and

deontic effects are also flagged.

8. Human Collaboration Mediated by Handshakes

We have experimented with situations where humans collaborate in a handshake

fashion [Hi01,HE01]. These situations involve several collaborators, each manipulating

his own proxy agent. The collaborative aspect involves the participants signaling their

intentions. This may lead to negotiation. At any rate, all parties agree to the broad

12

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

details of each other's plans. These agreements, however, are not enforced. What is

crucial here is that communication is a sequence of handshakes. A handshake cannot

happen until both parties are prepared to perform it. Also, a handshake is atomic in the

sense that it cannot be partly done: an attempted handshake is either completed

(successfully) or has no effect. This atomicity may be achieved by the occurrence of

synchronizing events triggered by peripheral devices. For example, two collaborators

may handshake by holding the left mouse button down when the mouse cursor is on the

same button on their respective windows. Atomicity, however, can also be achieved by

the analogue of what are called adjacency pairs in human conversation (as when the

addressee shakes his head or says "Okay" at the end of the speaker's statement). These

are similar to send-and-acknowledge communication protocols. For example, the

addressee may click the OK button as the initiator elaborates his intentions. If the

addressee does not click OK, say, because the message was garbled in transmission, then

the handshake in which the message was meant to be communicated simply does not

happen.
A computer-supported collaborative task that enforces handshake communication

could allow activities that do not follow the handshake model. For example, an

individual might access decision aids while collaborating with another who has no need

or desire to see the details these aids provide. Or the second might want to have the

details displayed on his screen to justify some step taken by the first. As long as the two

are not jointly referring to some feature jointly displayed on their screens, agreeing, or

disagreeing, there is no need for handshaking. Handshake communication between

computer-supported collaborators forces them to attend concurrently to a sequence of
communication actions. This is in the spirit of Clark's position on face-to-face

conversation [C196], where the addressee is active - consider the nods, expressions, and

interjections an addressee normally makes.
In one of our testbeds [HE01], the same grid is displayed on the screens of two

collaborators (players). The grid displays obstacles and the start and goal positions of

two proxy agents, each controlled by one of the players. Each player tries to move his

agent from its start to its goal position, avoiding obstacles and the other agent, so as to
minimize the sum of the single-cell moves made by both proxy agents. The obstacles

tend to restrict motion along corridors. The players thus must have some high-level

agreement about the paths of their proxy agents so that one is not forced to backtrack out

of a long corridor. To this end, there is a whiteboard on which each player can portray

the intended general path of his proxy agent. A proxy agent is not required to follow a

path sketched for it, and an intended path may be elaborated at any time. Players can

move freely from the grid to the whiteboard. Once a player has suggested a path

segment, however, the players must eventually agree on something. If the other player

initially disagrees, he can elaborate his own path or suggest an alternative for the first

player. All communication relating to the whiteboard is handshake communication, and

the protocol for turn taking while operating on the whiteboard is quite rigid.

Several undergraduate RAs developed projects around this testbed. One

undergraduate presentation at the 2001 NC-LSAMP conference covered the general

approach to this cooperative system [Hinds 01]. Several undergraduates have contributed

to the development of the whiteboard and have given presentations on it [Hayes 01,

Spears 01, Spears 02]. Several undergraduates have also given presentations on

13

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

identifying methods of using computer displays to facilitate highly cooperative tasks by

making the evolving common ground manifest [Webb 01]. Other undergraduates gave

presentations on the initial implementation of the distributed system using Tcl/Tk

[Agyeman 01, Spratling 01]. Presentations also addressed the recent Java

implementation [Gill 02]. Another undergraduate looked at ways to eliminate I/O

bottlenecks in operating systems without sacrificing the structure of an operating system

or applications [Khan 01].

9. A Statechart Design for a Whiteboard for Collaboration

One of our graduate students [Ma01a,Ma01b] produced a design for the interface for

the whiteboard (in the testbed just mentioned) following the architectural approach

presented by Horrocks [Ho99]. Horrocks advocates a three-layer architecture for user-

interface design. In a usual user interface, event handler code is used to make individual

objects work together. But, when a user interacts with an application, the interaction is

with the group of objects making up the interface, not with individual objects. So the

objects must work together; in the usual approach, the code making the objects work

together is distributed throughout the event handlers.
A better approach is to centralize the control of the user interface in a small number

of control objects, each responsible for coordinating the behavior of a group of related

user-interface objects. Event handlers associated with interface objects are now used

simply to forward user-supplied events to the appropriate control object. The control

objects maintain the state of the user interface as a whole. They send messages to the

user-interface objects as well as to the model objects. (A model object maintains the

long-term information for the application and is not concerned with how the information

is presented.) This gives a three-layer architecture - user interface, control, and model -

whence the acronym UCM.
With direct manipulation, the user interface moves from one state to another, and the

state, by defining the context in which an event occurs, defines the set of possible events

that a user can supply. This is the event-state-action paradigm, which is followed by

UCM architectures. Horrocks advocates Statecharts as an appropriate formalism for

UCM architectures. One reason is that Statecharts allow concurrent components

(substates of AND states), thus avoiding the state explosion experienced with products of
finite state automata. Another reason is that Statecharts allow hierarchical decomposition

(substates of XOR and AND states), thus allowing incremental refinement in the detail of

a design.
Our design included all the detail required for negotiation among the players

involved in using the whiteboard. An attempt was made to generalize the design beyond

the two-player case. Most of the Statecharts represented the three-player case, which is

enough to suggest clearly the structure required for any n-player case, n > 2.

10. Undergraduate Work on Motion Planning
Part of the effort for this grant carried on work from a previous grant from NASA

ARC. This was a two-year (8/15/97 - 8/14/99) grant entitled "Motion Planning in a

Society of Intelligent Mobile Agents" (Research Grant No. NAG2-1150) with the same

PI, in the Department of Computer Science at North Carolina A&T State University. We

addressed motion planning for a group of robotic agents. Several projects adapted the A*

14

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

algorithm to the case of multiple robots. Recall that the A* algorithm is a state-space

search algorithm that maintains a priority queue of the states to select for expansion.

Given a node n in the state space, the heuristic value associated with n is

fin) = g(n) + h(n),

where g(n), which is known, is the number of steps from the start to n, and h(n) is an

estimate of the number of steps needed to reach the goal state. Candidate nodes are

selected from smaller to larger values off (hence the data structure for storing the

children of expanded nodes is a priority queue). As long as h(n) does not overestimate

the number of steps, this best-first algorithm is guaranteed to find an optimal path in the

state-space from the initial to the goal node and is then known as an A* algorithm.

In our applications, we use a grid that contains obstacles as well as a starting and

goal cell for each robot. The aim is to get the robots from their starting points to their

goal points in the least number of steps while avoiding collisions with the obstacles and
other robots. For the single-robot case, at a node n in the search space, the estimate h(n)

is calculated as the Euclidean distance from the robot's current position to the robot's

goal position. As the robot must move horizontally or vertically (from one cell to another

that shares a side with it), the best the robot can actually do is the Manhattan distance

from its current to its goal position (i.e., the sum of the difference between the rows and

the difference between the columns of these positions). This is clearly greater than or

equal to the Euclidean distance between these two positions (with equality only when the

goal and current positions are in the same column or row and there is no intervening

obstacle). For the multiple-agent case, suppose there are m robots labeled 1, ..., m. The

variable part of the state is recorded as a vector v of m coordinates, where vi is the

coordinate of robot i. Let the vector g be the vector of goal positions and b be the vector

of initial positions. The object is to find a path through the 2xm-dimensional space that

takes the robots from b to g without colliding with objects or each other and such that the

sum of the single-cell moves by the m robots is a minimum. Where n is the node in the
m

search space corresponding to v, h(n) is calculated as _-'_i=1d(gi' vi)' where d(gi,vi) is the

Euclidean distance from robot i's position at n to robot i's goal position. By the fact that

a summation preserves inequalities, it follows that h(n) as thus calculated does not

overestimate the sum of the distances the robots must travel.

Much of our work here was restricted to the two-robot case, but it generalizes in

obvious ways to the m-robot, m > 2, case [Barnette 02]. Search-space nodes where robots

come close to each other generate many descendants where the robots collide. Such

nodes can be biased against by including a third positive term, k(n), in the calculation of

fin). k(n) is a decreasing function of the distance between the agents [Saddler 01]. We

have looked closely at the appropriate form for k(n) [Adams 02]. One undergraduate

considered improving the performance of the algorithm by detecting situations where all

agents could take several steps at once without threat of collision [White 02]. Another

undergraduate considered how this scheme may be enhanced by allowing some human

control [Faulcon 01, Faulcon 02].

Some projects have adapted Lee's algorithm to multiple-robot path planning

[Johnson 01, Coombs 02]. Recall that Lee's algorithm for a single robot finds a minimal

path from an initial position to a goal position on a grid in the presence of obstacles. It

does so in two phases. In the first, forward-sweep phase, cells are numbered by their

distances (allowing for obstacles) from the source. This is done by expanding a frontier

15

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

with incrementing numbers out from the source. This phase finishes when the frontier

reaches the goal. In the second, back-trace phase, a path is found by starting at the goal

and following cells with decreasing numbers back to the source. A simple induction

shows that this is guaranteed to find a source-to-goal minimum path. We adapt Lee's

algorithm to obtain a parallel algorithm for multiple robots. The forward-sweep phase is

done in parallel for all m > 2 robots. (This is appropriate for a multiprocessor system

with shared memory; imagine one plane of memory dedicated to each robot.) The sweep

is changed so that it goes from the goal to the source for each agent. In the back-trace

phase, heuristics are used to avoid collisions in such a way that the total number of steps

for each agent is increased as little as possible. This involves finding an appropriate

function for determining when two agents are sufficiently close to threaten collision

[Player 02]. By reversing the roles of the goals and sources, the actual robots may begin

following the paths before the algorithm has completed. We have looked at ways to

exploit priorities among agents and to group agents. Groups can be extracted from

single-agent runs of Lee's algorithm. This also allows us to identify channels through

which the groups travel. By exploiting the range of speeds less than the maximum for

each agent, groups can be routed along channels in such a way that we avoid collisions

among groups as well as within groups.

Other projects have looked at cell decomposition for motion planning [Ore 01,

Manning 01]. In cell decomposition methods [La91], the space, including obstacles,

through which a robot moves from source to goal is represented as a tree. Each node of

the tree is a rectangloid cell, labeled as empty, full, or mixed. The children of a node

represent its decomposition. Only a mixed cell may have children. We used quadtrees

(appropriate for two-dimensional problems), where a rectangle is partitioned into four

sub-rectangles. We use breadth-first search to find a source-to-goal channel of empty

cells that on demand decomposes a mixed rectangle in search of adjacent empty

rectangles to complete promising initial segments of channels.

11. Students Supported and Graduated

Three students completed masters theses [An02,Mo01,Wi00]. Of these, two were
African-American and were partially supported by the grant, and one was unsupported.

Three students, all African Americans, produced masters projects [Is01,Ma01,Th01]. Of

these, one was fully supported by the grant, one was partially supported, and the third

completed while employed full time. Twelve undergraduate students were supported at

various levels during the 2000-2001 academic year, ten were African Americans, and

eight have graduated. Ten more were supported at various levels during 2001-2002; nine
were African Americans, and one has graduated.

12. Pubfications

The grant resulted in two book chapters [ER01,ERH02] and ten papers in conference

proceedings [BE02,Es02,HE01 ,Hi01 ,Is01 a, JE01 a, JE01 b,Jo01 ,ME01 ,WE01].

13. Activities

The following activities were pursued as part of the grant.

16

Final Report Motion Planning in a Society of Intelligent Mobile Agents A, Esterline, NCA&TSU

• One of two co-directors of the NASA ACE Center at North Carolina A&T State

University.

• Took six students to the ADMI Minorities Computing Conference in Hampton,

VA, May/June 2001. Three gave oral presentations of their papers and two had

poster presentations. One oral presentation [Hi01] was awarded the prize for the

best oral presentation.

• Moderator for the panel discussion "Communication and Coordination" at the

NASA Goddard/JPL Radical Agent Architectures Conference, Tyson's Comer,

VA, Jan. 2002.

• Assistant moderator for the "Formal Models of Multiagent Systems" session at

the 5th World Multiconference on Systemics, Cybernetics and Informatics (SCI

2001), Orlando, FL, July 2001. (The moderator was a former student.)

• Advised eleven students who gave oral presentations at the NC-LSAMP

Undergraduate Minorities Research Conference in April 2001 at Greensboro, NC.
One of the students was awarded first place in the category of computer science

oral presentations. One of two recipients from the seven participating universities

of the Outstanding Faculty Mentor award.

• Advised six students who gave oral presentations and one student who gave a

poster presentation at the NC-LSAMP Undergraduate Minorities Research
Conference in April 2002 at Raleigh, NC. One of my undergraduate RAs, Renard

Spratling, won third place for his oral presentation in the computer science section

at the Florida-Georgia LSAMP in January 2002. He won third place again for his

oral presentation in the computer science/math section at the National Association

for Equal Opportunity in Higher Education (NAFEO) Conf. in Washington, D.C.

in March 2002.

• Mentor for two NASA SHARP Plus (high-school) students in the summer of 2000

and again in the summer of 2001.

14. Conclusion and Future Work

Our approach is to conceptualize computing resources as a multiagent system so that
these resources and human collaborators may be modeled uniformly using an appropriate

formalism. The work supported by this grant has demonstrated that process algebras are

an appropriate formalism for this modeling. A process algebra offers rigorously defined

operators for defining rich patterns of communication behavior in a straightforward way.

Also, the handshake communication characteristic of process algebras - which happens

only when both parties are prepared and where both parties play an active role - is a good

model for speech acts in human face-to-face conversation. Still, a process-algebraic

agent abstraction, as we have argued at length elsewhere [ER01,ERH02], must be

supplemented with epistemic notions (especially common knowledge) and deontic

notions (such as obligation and permission). This is partly because what agents or

humans know about each other generally is not at the level of detail of behavior patterns.

It is also because obligations, common knowledge, and so on hold in the situation at

hand, and one must capture their influence. Thus, it is important also to model human-

agent systems using epistemic and deontic logic, as we have already done [BE02]. Note

17

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

that, following the usual approach to software development, one begins with an abstract

specification from which one develops a more concrete design. We have followed this

approach in work where we relate a process-algebraic model to a modal-logic

specification. We have also found that Statecharts are generally an easily used formalism

for designing human-agent systems. (Process-algebraic semantics have been given for

Statecharts.)

The work supported by this grant resulted in a significant number of publications.

Six masters students, all but one of whom were African Americans, finished projects or

theses by working on this grant. And a large number of undergraduate presentations

resulted from this grant.
Future work will include close scrutiny of the adequacy of the process-algebraic

notion of a handshake as a model for the signaling aspect of speech acts in face-to-face

conversation. In everyday dialogue, there are frequently situations where more than two

participants are involved in a speech act (as when the speaker is addressing a group).
Theoretical foundations would be shored up if there were a multiagent process-algebraic

handshake. The group in CCS generated by the set of particulate actions and with the

commutative product x (on which the synchronous calculus is based) [Mi89] would seem

to offer something close to what is needed. Often the allowable pattern of

communication behavior in a group does not depend on the specific number of

participants. This suggests an n-agent handshake, where n _> 2 but is otherwise
indeterminate. The connection between epistemic logic (especially common knowledge)

and process algebras warrants detailed formal development. The obvious approach is to

attempt to relate the epistemic modal operators to the modal operators of Hennessey-

Milner logics [Mi89], which are similar to dynamic logic but with process-algebraic

terms as the underlying computation model.

Common knowledge is being recognized as a key concept not only in economics,

philosophy, linguistics and the psychology of language, and the theory of distributed

systems but also in the social sciences in general. A recent book by Chwe [Ch01]

identifies widespread social conventions and rituals for establishing common knowledge.

All of this work can be tapped to establish empirically-grounded yet rigorous foundations

for the design of systems (including human groups) that integrate humans with

computational resources.
It is generally assumed in the literature on multiagent systems that inter-agent

communication is asynchronous (in the sense that a sender does not wait for the

receiver's reply, not in the sense in which a process algebra is asynchronous, i.e., without

a global clock). If, however, communication among agents should be fundamentally
similar to human face-to-face human conversation, then one would expect inter-agent

communication to be synchronous in the first instance. One should undertake a

reconstruction of agent communication to see how asynchronous communication can be

founded on principles similar to face-to-face conversation. The starting point is

recognition that patterns of transmitted bits are interpreted according to the conventions

agreed upon by system designers. One should consider how asynchronous non-electronic

communication (as, for example, enabled by writing) arose and depends on carrier

reliability, bounds on delivery time, and time-stamping. The conditions for common

knowledge arising for any variety of asynchronous communication should be

investigated.

18

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

An important topic we have only touched on in the period of the grant (but see

[Jo01,JE01a]) is game theory, which we have been finding more and more relevant.

Given rationality assumptions, game theory explains how agents coordinate with a
minimum of communication and without communicating plans. Game theory does,

however, rely on the fact that the strategies available to agents are common knowledge.

In fact, common knowledge is an important topic in game theory. Game theorists look

for (Nash) equilibria of games, which are strategy profiles (each consisting of a strategy

for each player) where no player could do any better (in terms of payoff) given the

strategies selected by the other players. Of particular interest is a subgame-perfect

equilibrium, where the strategy profile is a Nash equilibrium in every subgame, including

those never reached along the path of play (viewing a game now in extensive form). A

subgame-perfect equilibrium thus requires that threats or promises be credible, and such

strategy profiles are essentially self-enforcing. Game theory has become an important

tool for political scientists and political economists, especially in developing what are

called analytic narratives [BG+98]. An analytic narrative pays close attention to the facts

of an historical situation but gains insight from applying game theory to the alternatives

available to the players involved. A given narrative may have several perspectives and

frequently benefits from negative results that show that various perspectives are

unfruitful. Game theory fits well into our approach. Actions always involve

communication in some sense, and one should be able to describe players' strategies with

a process algebra given that the appropriate participants can be identified and n-agent (n

_> 2) handshakes are available. Game theory has also received considerable attention in

the literature on multiagent systems (e.g., [Kr01]), especially regarding negotiation.

References

[Ai94] H. Ait-Kace, The Wild LIFE Handbook (prepublication edition). Paris: DEC

Paris Research Laboratory, 1994.

[A187] Heather Alexander, Formally-Based Tools and Techniques for Human

Computer Dialogues. Chichester, England: Ellis Horwood Limited, 1987.

JAn01] Dominic Anderton, A Formal Representation of the Spheres of Commitments,

MS Thesis, Dept. of Comp. Sci., North Carolina A&T State Univ.,

Greensboro, NC, 2000.

[Aq84] L. Aqvist, "Deontic Logic," in D. M. Gabbay and F. Guenther (eds.),

Handbook of Philosophical Logic, Vol. II, Reidel: Dordrecht/Boston, 1984,

pp. 607-704.

[BE02] Jamika Burge and Albert Esterline, "Using Epistemic And Deontic Logic To

Model Societies of Agents", to appear in Proc. 6th Worm Multiconference on

Systemics, Cybernetics and Informatics (SC12002)

[BG+98] R.H. Bates, A. Greif, M. Levi, J.-L. Rosenthal, and B. R. Weingast, Analytic
Narratives. Princeton, N J: Princeton University Press, 1998.

[BN99] F. Baader and T. Nipkow Term Rewriting and All That. Cambridge:

Cambridge University Press, 1999.

[Ca92] Bob Carpenter, The Logic of Typed Feature Structures. Cambridge, UK:

Cambridge University Press, 1992.

19

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterllne, NCA&TSU

[CC82]

[ChO1]

[C196]

[DF+98]

[ER01]

[ERH02]

[Es02]

[FH+95]

[FH94]

[FS97]

[Gu94]

[HE01]

[Hi01]

[Ho98]

[HS99]

[Is01 a]

H. H. Clark and T.B. Carlson, "Speech Acts and Hearers' Beliefs", in N.V.

Smith (ed.), Mutual Knowledge, New York: Academic Press, 1982, pp. 1-37.

Michael S.-Y. Chwe, Rational Ritual: Culture, Coordination, and Common

Knowledge. Princeton, N J: Princeton University Press, 2001.

Herbert H. Clark, Using Language, Cambridge, England: Cambridge

University Press, 1996.

A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer Interaction

(2nd ed.), Hertfordshire, UK: Prentice Hall, 1998.

A. C. Esterline and T. Rorie, "Using the n-Calculus to Model Multiagent

Systems," in C. Rouff et al. (eds.), Formal Approaches to Agent-Based

Systems, Springer-Verlag, 2001

A. C. Esterline, Toinette Rorie, and Abdollah Homaifar, "A Process-

Algebraic Agent Abstraction," chapter in a book on multiagent systems edited

by J. Rash to be published by Kluwer

A. C. Esterline, "Handshakes, Common Knowledge, Obligations, and

Agents," to appear in Proc. NASA Goddard/JPL Conf. on Radical Agent

Architectures, 2002.

R. Fagin, J.Y. Halpern, Y. Moses, and Y. Vardi, Reasoning About Knowledge,

Cambridge, MA: The MIT Press, 1995.

R. Fagin and J.Y. Halpern, "Reasoning about Knowledge and Probability",

Journal of the ACM, 1994, pp. 340-367.

Formal Systems, Failure-Divergences Refinement: FDR2 User Manual.

Formal Systems (Europe) Ltd, 1992-97.

M. Guarino, "The Ontological Level," in R.Casati, B. Smith, and G, White

(eds.), Philosophy and the Cognitive Sciences (Proc. 16 th Int. Wittgenstein

Symposium), Vienna: Verlag H61der-Pichler-Tempsky, 1994, pp. 443-457.

O. Hinds and A. Esterline, "Joint Activity Coordination and Common

Knowledge in Multiagent/Multi-person Environments," The 5 th Worm Multi-

Conference on Systemics, Cybernetics and Informatics, Orlando, FL, July

2001.

O. Hinds (Advisor: A. Esterline), "Joint Activity Coordination and Planning

in Multiagent Environments through Computer Integrated Communication,"

ADMI 01, Hampton, VA, May 2001.

Ian Horrocks, Constructing the User Interface with Statecharts. Harlow,

U.K.: Addison-Wesley, 1998.

M.N. Huhns and L.M. Stephens, "Multiagent Systems and Societies of

Agents," in G. Weiss (ed.), Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence, Cambridge, MA: The MIT Press, 1999, pp.

79-120.

A. Issa (Advisor: A. Esterline), "Rigorous Specification of Joint Activity in

Human-Computer Collaboration," ADM101, Hampton, VA, May 2001.

20

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

[Is01b]

[JE01a]

[JE01b]

[Jo01]

[Kr01]

[La91]

[Ma01a]

[Ma01b]

[ME01]

[Mi89]

[Mo01]

[NA00]

[Ro98]

[Si98]

[Sm80]

[Su87]

[ThOl]

Abdulcadir Issa, Rigorous Specification of Joint Activity in Human-Computer

Collaboration, MS Thesis, Dept. of Comp. Sci., North Carolina A&T State

Univ., Greensboro, NC, 2001.

R. Johnson and A. Esterline, "Game Theory Applied to Agents for

Contracting Employment," The 5th Worm Multi-Conference on Systemics,

Cybernetics and Informatics, Orlando, FL, July 2001.

E. Johnson and A. Esterline, "Hierarchical Multiagent Motion Planning using

Lee's Algorithm for Static Environments," The 5 th World Multi-Conference

on Systemics, Cybernetics and Informatics , Orlando, FL, July 2001.

R. Johnson (Advisor: A. Esterline), "Match Maker for Contracting

Employment," ADMI 01, Hampton, VA, May 2001.

Sarit Kraus, Strategic Negotiation in Multiagent Environments. Cambridge,

MA: The MIT Press, 2001.

J.C. Latombe, Robot Motion Planning. Boston: Kluwer Academic Publishers,

1991.

Karen Martin, Communication in a Human-Controlled Multiagent System to

Reach Common Ground, MS Project Report, Dept. of Computer Science,

North Carolina A&T State Univ., Greensboro, NC, 2001.

Karen Martin, "A Statechart-based Design of a Whiteboard to Facilitate

Common Ground in Computer-Based Collaboration," Poster Presentation,

ADMI 01, Hampton, VA, May 2001.

K. Mosley and A. Esterline, "Modeling Societies of Agents and Users Using

CSP," The 5 th Worm Multi-Conference on Systemics, Cybernetics and

Informatics, Orlando, FL, July 2001.

R. Milner, Communication and Concurrency, New York: Prentice-Hall, 1989.

Kevin Mosley, Uniformly Modeling Societies of Agents and Users Using

Formal Methods: CSP and VDM, MS Thesis, Dept. of Computer Sci., North

Carolina A&T State Univ., Greensboro, NC, 2001.

NASA Intelligent Systems Program, Intelligent Systems Program Plan,

Moffett Field, CA: NASA Ames Research Center, 2000.

A.W. Roscoe, The Theory and Practice of Concurrency. Prentice Hall PTR,

1998.

M.P. Singh, "A Semantics for Speech Acts, in M. N. Huhns and M. P. Singh

(eds.), Readings in Agents. San Francisco, CA: Morgan Kaufmann, 1998, pp.

458-470.

R.G. Smith, "The Contract Net Protocol: High Level Communication and

Control in a Distributed Problem Solver," IEEE Transactions on Computers,

C-29(12), pp. 1104--1113, 1980.

Suchman, L.A., Plans and Situated Actions: The Problem of Human-Machine

Communication, New York: Cambridge University Press, 1987.

Donald Thaxton, Interpreting Speech Acts with a Definite Clause Grammar

and Feature Structures, MS Project Report, Dept. of Computer Science,

21

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

[vL89]

[WEO1]

[wi00]

[Wo99]

[WP99]

North Carolina A&T State Univ., Greensboro, NC, 2001.

I. van Horebeck and J. Lewi, Algebraic Specifications in Software

Engineering. Berlin: Springer-Verlag, 1989

S. Wiriyacoonkasem and A. Esterline, "Heuristics for Inferring Common

Knowledge via Agents' Perceptions in Multiagent Systems," The 5 th Worm

Multi-Conference on Systemics, Cybernetics and Informatics , Orlando, FL,

July 2001.

S. Wiriyacoonkasem, Adapting the Co-Presence Heuristic for Inferring

Common Knowledge via Agents' Perceptions in Multiagent Systems through

the Use of Neural Networks, MS Thesis, Dept. of Comp. Sci., North Carolina

A&T State Univ., Greensboro, NC, 2000.

M. Wooldridge, "Intelligent Agents," in G. Weiss (ed.), Multiagent Systems:

A Modern Approach to Distributed Artificial Intelligence, Cambridge, MA:

The MIT Press, 1999, pp. 27-77.

Lary Wos and Gail W. Pieper, A Fascinating Country in the Worm of

Computing. Your Guide to Automated Reasoning. Singapore: World Scientific

Publishing Co.Ple., Ltd., 1999

Appendix: Undergraduate Presentations at Conferences
The NC-LSAMP (North Carolina Louis Stokes Alliance for Minority Participation)

Conference for minority undergraduates in the areas of science, mathematics,

engineering, and technology is held annually in April. The conferences in 2001 and 2002

were held during the period of this grant. The following lists the presentations given by

my undergraduate RAs at these conferences. All were relevant to the topics of the grant.

All the presentations were oral presentations except for the one given by White in 2002,

which was a poster presentation. African-American students are indicated with an

asterisk ('*').

NC-LSAMP 2001

Agyeman, Kwadwo*, "Multi-user Task Integration."

Faulcon, Michael C.*, "Robot Motion Planning using the A* Algorithm in the Presence

of Multiple Agents."

Hayes, Juan*, "A Hierarchical Internet Whiteboard for Joint Task Planning of Mobile

Agents."

Hinds, Oliver, "Joint Activity Coordination and Planning for Multi-Agent Environments

through Computer Integrated Communication."

Johnson, Edgar*, "Hierarchical Multi-Agent Motion Planning using Lee's Algorithm for

Groups of Multiple Agents within a Static Environment."

Khan, Muntasir Ahmed, "Operating Systems Support for High-Speed Communication."

Manning, Que'Shetta*, "Using Quadtrees to Find Channels for Robot Motion Planning."

Ore, Jenelle*, "Cell Decomposition in Quadtrees for Robot Motion Planning."

22

Final Report Motion Planning in a Society of Intelligent Mobile Agents A. Esterline, NCA&TSU

Saddler, Edward T.*, "Multiple-Robot Motion Planning using the A* Algorithm with an

Enhanced Heuristic Function."

Spears, Patrick*, "Rules of Engagement for Computer Facilitated Cooperation."

Spratling, Renard*, "Multi-user Distributed Workspace for Joint Motion Planning."

Webb, Kimberly*, "Computer Displays of Common Ground to Facilitate Joint

Activitites."

NC-LSAMP 2002

Adams, Beth*, "Modifying a Multiagent A* Algorithm to Favor Paths that Maintain

Distance between Agents."

Barnette, Kenshasa*, "A Multiagent A* Algorithm."

Coombs, Nickolia*, "Multi-Agent Motion Planning using Lee's Algorithm."

Faulcon, Michael C.*, "Coordinating the Paths of Multiple Agents Independently

Planned Using an A* Algorithm."

Gill, Jaspreet, "Joint Activity Coordination and Planning in Multi-Agent Environments

through Computer Integrated Communication."

Manning, Que' Shetta*, "Two-Agent Implementation of the A* Algorithm."

Player, Malcolm*, "Using a Distance Function in Collision Avoidance in an Application

of Lee's Algorithm for Multiagent Path Planning."

Spratling, Renard*, "Multi-user Distributed Workspace for Human-Computer Integration

and Joint Motion Planning."

Spears, Patrick*, "Rules of Engagement for Computer Facilitated Cooperation: An

Update."

White, Marcus*, "A Big-Step Heuristic to Increase the Efficiency of the Multi-Agent

Implementation of the A* Algorithm."

Florida-Georgia LSAMP 2002

Spratling, Renard*, "Multi-user Distributed Workspace for Human-Computer Integration
and Joint Motion Planning." (Awarded third place oral presentation in the computer

science section.)

National Association for Equal Opportunity in Higher Education (NAFEO)

Conference (Washington, D.C.) 2002

Spratling, Renard*, "Multi-user Distributed Workspace for Human-Computer Integration
and Joint Motion Planning." (Awarded third place oral presentation in the computer

science/math section.)

23

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

• _ --- , _;.._._._-_. ;;,,.,., _;, ,

_intom_tion, Includingsuggas_ls _x redudng_ 1o_dentoW_ Headqu_wl _enn_, vmcmram ,or ,m_m,u., '-'v" _ "-'- -,
1215JeffenlonO|vlsH_ilway.Sulto1204../_l_l_n. VA 22202-43(]2.andto IheOfl'ceof Mar1_ementandSudgeL
paperworkReductionProject(0704-0188)Washington.u_, ,_J_.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT _F.// Type 3, DATES COVE_ED (From- To)6/15/2000 - 6/14/2002
04-11-2002 _m,n_ry. nf R_,-_ - _°1

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Motion Planning in a Society of Intelligent

Mobile Agents

16. AUTHOR(S)

Dr. Albert C. Esterline, Project Director

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

North CarolinaAgricultural and Technical
State University

1601E. Market St., Greensboro, NC 27411

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

Same as No. 7

5b. GRANT NUMBER

NAG 2-1413

5C. PROGRAM ELEMENT NUMBER

5(:1. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION

REPORT NUMBER

4-42107

10. SPONSOR/MONITOR'S ACRONYM(S)

N_SA _C

11. SPONSORING/MONITORING

AGENCY REPORT NUMBER

12. DISTRIBUTION AV_LABILITY STATEMENT

Per §1260.22, NASA encourages the widest practicable dissemination of research

results at any time during the course of the investigation.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

See Attached

15. SUBJECT TERMS

- computer integration, multiagent systems, process algebras,

knowledge, multiagent motion planning

common

16. SECURITY CLASSIFICATION OF:

a. REPORT b, ABSTRACT =.THIS PAGE

t7. UMITATIONOF t8. NUMBER
ABSTRACT OF PAGE8

19a, NAME OF REiPON$iBLE P_-_.SON

Dr. Albert Esterline
lffi:. TELEPONE NUMBER (/nc/ude area code)

(336) 334-7245. Ext. 462

Standard Form 298 (Rev. 8-98)
Pnmcdbed by ANSI-Std Z39-18

